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A theoretical vibration analysis of an elastically connected double-string system is
presented. The double-string system is the simplest model of a complex continuous system,
which is composed of two one-dimensional elastic solids attached by a Winkler elastic layer.
The free and forced transverse vibrations of this system are considered. The present paper
develops the free vibration theory, and a companion paper analyzes the forced vibrations.
The motion of the system considered is described [1] by a non-homogeneous set of two
partial di!erential equations, which are solved by using classical mathematical methods. The
solutions of the free vibrations are derived from the Bernoulli}Fourier method. The
boundary-value and initial-value problems are solved. The natural frequencies and natural
mode shapes of vibration are determined. The free vibrations of an elastically connected
double-string system are realized by synchronous and asynchronous de#ections.

( 2000 Academic Press
1. INTRODUCTION

The vibration problems of one-dimensional and two-dimensional continuous systems are
important from a theoretical as well as from a technical point of view. Many modern
engineering structures often make use of one-dimensional continuous elements resistant to
tension but not to bending (for example, strings, cables, ropes, chains, etc.) [2}8]. A string,
being the simplest model of one-dimensional continuous system has been a subject of great
scienti"c interest for a considerable time. This fact is con"rmed by the number of references
collected. Fundamental theory for string vibrations is discussed in a number of monographs
by e.g. Bishop and Johnson [2], Den Hartog [3], Fryba [4], Kaliski [5], Nowacki [6, 7],
etc. The di!erent aspects of string dynamics are treated by numerous investigators and
many recent studies are devoted to the vibration problems of strings [9}92]. Among these
publications, the works concerning the vibrations of a string supported on an elastic
foundation are especially interesting [7, 36, 45, 59, 60, 74, 82, 85, 88].

The present paper deals with the transverse vibration analysis of an elastically connected
double-string system. This mechanical system is an example of a complex continuous
system. Complex continuous systems have theoretical and practical importance and have
a wide application in aeronautics, cosmonautics, civil and mechanical engineering
[4, 6, 9, 85, 89}93]. A system of two parallel strings continuously coupled by a linear elastic
element constitutes an interesting vibratory structural system. The physical model of this
system is the simplest form of a complex continuous system which is composed of two
one-dimensional solids. The theoretical foundations of transverse vibrations of a two-string
22-460X/00/170355#12 $35.00/0 ( 2000 Academic Press



Figure 1. The physical model of an elastically connected double-string complex system.
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system have been presented in the author's early works [9, 89}91]. The vibration problem
of a similar elastically connected double-membrane system as an example of a complex
continuous system consisting of two two-dimensional solids has been considered by the
author in a recent paper [93].

In the present paper, the free transverse vibrations of two parallel strings continuously
joined by a Winkler elastic element are analyzed and the complete exact theoretical
solutions of free vibrations are formulated.

2. FORMULATION OF THE PROBLEM

The physical model of the vibrating system under consideration consists of two parallel,
homogeneous and uniform strings attached together by a Winkler elastic element (see
Figure 1). Both the strings have the same length and are supported at their ends. The strings
are stretched under suitable constant tensions and subjected to arbitrarily distributed
continuous loads. The small vibrations of the system with no damping are considered.

The transverse vibrations of a generally loaded double-string system are described by the
following di!erential equations [9, 89}91]:
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The boundary and initial conditions for this problem have the form
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3. FREE VIBRATIONS

The governing equations for the free vibrations of an elastically connected two-string
system are the following:
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These homogeneous partial di!erential equations are solved by the Bernoulli}Fourier
method assuming the general solutions of equations (4) in the form
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¹(t)"A sin(u t)#B cos(u t), (6)

where u is the natural frequency of the system. By substituting expressions (5) into
equations (4) one obtains a set of ordinary di!erential equations
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which have the following solutions:
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Substituting them into equations (7) results in the following system of homogeneous
algebraic equations:
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for which there are non-trivial solutions when the cardinal determinant of the system
coe$cient matrix is equal to zero. This in turn yields the following characteristic equation:
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Since the discriminant of this biquadratic algebraic equation is positive,
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there are two di!erent real roots
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The analysis of these roots shows that solutions are possible for three cases. It can be proved
that the root r2

1
is always positive, while r2

2
can be either positive, negative or equal to zero

depending on the values of the parameters characterizing the vibrating system.
The following three cases are now considered:
Case 1: r2
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The frequency u
0

denotes the natural frequency of a two-degree-of-freedom discrete
system which consists of two rigid solids modelling the rigid strings joined by an elastic
element.

This case is now considered in detail. The characteristic equation (10) has the following
four real roots
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where
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The general solutions (8) of equations (7) may now be written in the form
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Then the general mode shapes of vibration (8) are as follows:
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Finally, the free vibrations (5) of a double-string system are described by the expressions
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The unknown constants A
i
, B

i
can be determined by solving the boundary value problem.

Substituting the mode shape functions X
1
(x) and X

2
(x) (16) into the transformed boundary

conditions (2)
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gives a set of four homogeneous algebraic equations for the unknown constants. For the
existence of its non-trivial solutions the cardinal determinant of the coe$cient matrix of
equations must vanish. This necessary condition leads to the following characteristic
equation:
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It can also be shown that B
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"0. From the above relation, the unknown eigenvalues k
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The frequency equation of the vibration problem considered is obtained by transforming
the relationship (13) and taking into account (19)
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The natural frequencies of a two-string system are calculated from the formula
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One can now formulate the time functions (6) and the natural mode shapes (16)
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Finally, the free vibrations of the system considered are described by the following formulae:
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Solving the boundary value problem gives the following values of constants:
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Then the natural mode shapes are received in the same form (22) as for the case 1. The
eigenfrequencies are computed from the formula (21), and "nally the free vibrations are
expressed by identical relations as equations (25).
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Solving the boundary value problem gives A
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vibrations with the natural frequency u"u
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consisting of two rigid solids (modelling the rigid strings) joined by an elastic element. The
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boundary conditions make it impossible to execute the vibration motion of an elastically
connected two rigid string system. Finally, it is seen that the cases for which the roots r2

2
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are of no interest in the free vibration analysis of the system considered.
The boundary conditions imposed mean that the solutions to the problem are based on

the positive roots (11) only (r2
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system performs the free harmonic vibrations described by equations (25).
It should be noted that the homogeneous partial di!erential equations (4) with the

particular boundary conditions (2) can be solved by using less general mathematical
procedures (applying the Fourier-series method) assuming the solutions to be in the form:
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These solutions are identical to equations (25).
Analyzing the solutions (25) which express the free vibrations of the system considered

allows an important conclusion to be drawn. An elastically connected double-string
complex system executes two kinds of vibrating motions: synchronous vibrations (a
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Figure 2. The general mode shapes of vibrations of an elastically connected double-string complex system
corresponding to the "rst four pairs of the natural frequencies.
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Substitution of the solutions (25) into the initial conditions (3) gives
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Solving these equations gives the following formulae which make it possible to calculate the
unknown constants:
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The free vibration problem of a double-string system is "nally solved.

4. CONCLUSIONS

The transverse vibration theory of an elastically connected double-string complex system
has been derived. The free vibrations of two parallel strings joined by a Winkler elastic
element are considered. The motion of the system is described by a non-homogeneous
conjugate set of two partial di!erential equations. The solutions of the free vibrations are
formulated by the Bernoulli}Fourier method. By solving the boundary value and
initial-value problems, the natural frequencies and natural mode shapes of vibration are
found. The free vibrations of a double-string system are realized by two kinds of motions:
synchronous vibrations (a

1n
'0) with lower frequencies u

1n
and asynchronous vibrations

(a
2n
(0) with higher frequencies u

2n
(u
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